Further studies on hepatitis C virus NS5A-SH3 domain interactions: identification of residues critical for binding and implications for viral RNA replication and modulation of cell signalling.
نویسندگان
چکیده
The NS5A protein of hepatitis C virus has been shown to interact with a subset of Src homology 3 (SH3) domain-containing proteins. The molecular mechanisms underlying these observations have not been fully characterized, therefore a previous analysis of NS5A-SH3 domain interactions was extended. By using a semi-quantitative ELISA assay, a hierarchy of binding between various SH3 domains for NS5A was demonstrated. Molecular modelling of a polyproline motif within NS5A (termed PP2.2) bound to the FynSH3 domain predicted that the specificity-determining RT-loop region within the SH3 domain did not interact directly with the PP2.2 motif. However, it was demonstrated that the RT loop did contribute to the specificity of binding, implicating the involvement of other intermolecular contacts between NS5A and SH3 domains. The modelling analysis also predicted a critical role for a conserved arginine located at the C terminus of the PP2.2 motif; this was confirmed experimentally. Finally, it was demonstrated that, in comparison with wild-type replicon cells, inhibition of the transcription factor AP-1, a function previously assigned to NS5A, was not observed in cells harbouring a subgenomic replicon containing a mutation within the PP2.2 motif. However, the ability of the mutated replicon to establish itself within Huh-7 cells was unaffected. The highly conserved nature of the PP2.2 motif within NS5A suggests that functions involving this motif are of importance, but are unlikely to play a role in replication of the viral RNA genome. It is more likely that they play a role in altering the cellular environment to favour viral persistence.
منابع مشابه
The non-structural protein 5A (NS5A) of hepatitis C virus interacts with the SH3 domain of human Bin1 using non-canonical binding sites
Background The hepatitis C virus (HCV) is a major human pathogen that causes severe diseases such as chronic hepatitis, liver cirrhosis and finally hepatocellular carcinoma. Although no enzymatic activity could be attributed yet to the HCV non-structural protein 5A (NS5A), it is indispensable for viral replication and particle assembly. Furthermore, it is associated with a variety of cellular p...
متن کاملHepatitis C virus NS5A: tales of a promiscuous protein.
The non-structural 5A (NS5A) protein of hepatitis C virus (HCV) has been the subject of intensive research over the last decade. It is generally accepted that NS5A is a pleiotropic protein with key roles in both viral RNA replication and modulation of the physiology of the host cell. Our understanding of the role of NS5A in the virus life cycle has been hampered by the lack of a robust in vitro...
متن کاملAnalysis of the Bin1 SH3 interaction with peptides derived from the hepatitis C virus protein NS5A and c-Myc reveals that NS5A can competitively displace c-Myc in vitro
Background Severe liver damage like cirrhosis and hepatocellular carcinoma (HCC) can be caused by manifestation of the hepatitis C virus (HCV) infection. Constitutively activated c-Myc oncogene has been shown to contribute to the establishment of HCV-mediated HCC. Interestingly, only one of many isoforms of the tumor suppressor protein Bin1 (bridging integrator 1), Bin1+12A, contains an interna...
متن کاملMutational analysis of hepatitis C virus nonstructural protein 5A: potential role of differential phosphorylation in RNA replication and identification of a genetically flexible domain.
Nonstructural protein 5A of the hepatitis C virus (HCV) is a highly phosphorylated molecule implicated in multiple interactions with the host cell and most likely involved in RNA replication. Two phosphorylated variants of NS5A have been described, designated according to their apparent molecular masses (in kilodaltons) as p56 and p58, which correspond to the basal and hyperphosphorylated forms...
متن کاملDetection of Pre-treatment mutations leading to resistance to direct hepatitis C virus blocking drugs in patients with chronic hepatitis C
Background and objective: Human is the only host of hepatitis C virus. This virus has a positive single stranded RNA and lipoprotein envelop that has 7 confirmed genotypes. According to studies, genotypes 1a, 3a and 1b are the most common genotypes in Iran. No effective vaccine against HCV infection has been developed instead, advances in antiviral treatment using drugs that directly affect spe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of general virology
دوره 86 Pt 4 شماره
صفحات -
تاریخ انتشار 2005